Categories
Uncategorized

Immune-evasive human islet-like organoids ameliorate diabetes – Nature.com

https://www.nature.com/articles/s41586-020-2631-z

  • 1.

    Yoshihara, E. et al. ERRγ is required for the metabolic maturation of therapeutically functional glucose-responsive β cells. Cell Metab. 23, 622–634 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Hrvatin, S. et al. Differentiated human stem cells resemble fetal, not adult, β cells. Proc. Natl Acad. Sci. USA 111, 3038–3043 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Rezania, A. et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat. Biotechnol. 32, 1121–1133 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Pagliuca, F. W. et al. Generation of functional human pancreatic β cells in vitro. Cell 159, 428–439 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Kieffer, T. J. Closing in on mass production of mature human beta cells. Cell Stem Cell 18, 699–702 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Liu, J. S. & Hebrok, M. All mixed up: defining roles for β-cell subtypes in mature islets. Genes Dev. 31, 228–240 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Takebe, T. et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499, 481–484 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Asai, A. et al. Paracrine signals regulate human liver organoid maturation from induced pluripotent stem cells. Development 144, 1056–1064 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Bader, E. et al. Identification of proliferative and mature β-cells in the islets of Langerhans. Nature 535, 430–434 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    van der Meulen, T. et al. Urocortin3 mediates somatostatin-dependent negative feedback control of insulin secretion. Nat. Med. 21, 769–776 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Blum, B. et al. Functional beta-cell maturation is marked by an increased glucose threshold and by expression of urocortin 3. Nat. Biotechnol. 30, 261–264 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    van der Meulen, T. et al. Urocortin 3 marks mature human primary and embryonic stem cell-derived pancreatic alpha and beta cells. PLoS ONE 7, e52181 (2012).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Prentki, M., Matschinsky, F. M. & Madiraju, S. R. Metabolic signaling in fuel-induced insulin secretion. Cell Metab. 18, 162–185 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Huang, S. M. et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461, 614–620 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Baas, M. et al. TGFβ-dependent expression of PD-1 and PD-L1 controls CD8+ T cell anergy in transplant tolerance. eLife 5, e08133 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Martinov, T., Spanier, J. A., Pauken, K. E. & Fife, B. T. PD-1 pathway-mediated regulation of islet-specific CD4+ T cell subsets in autoimmune diabetes. Immunoendocrinology 3, e1164 (2016).

    PubMed 

    Google Scholar
     

  • 17.

    Keir, M. E. et al. Tissue expression of PD-L1 mediates peripheral T cell tolerance. J. Exp. Med. 203, 883–895 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Ansari, M. J. et al. The programmed death-1 (PD-1) pathway regulates autoimmune diabetes in nonobese diabetic (NOD) mice. J. Exp. Med. 198, 63–69 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Ma, D. et al. PD-L1 deficiency within islets reduces allograft survival in mice. PLoS ONE 11, e0152087 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Rui, J. et al. β Cells that resist immunological attack develop during progression of autoimmune diabetes in NOD Mice. Cell Metab. 25, 727–738 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Wang, C. J. et al. Protective role of programmed death 1 ligand 1 (PD-L1) in nonobese diabetic mice: the paradox in transgenic models. Diabetes 57, 1861–1869 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Colli, M. L. et al. PDL1 is expressed in the islets of people with type 1 diabetes and is up-regulated by interferons-α and-γ via IRF1 induction. eBioMedicine 36, 367–375 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Osum, K. C. et al. Interferon-gamma drives programmed death-ligand 1 expression on islet β cells to limit T cell function during autoimmune diabetes. Sci. Rep. 8, 8295 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Eizirik, D. L. & Mandrup-Poulsen, T. A choice of death—the signal-transduction of immune-mediated beta-cell apoptosis. Diabetologia 44, 2115–2133 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Russ, H. A. et al. Controlled induction of human pancreatic progenitors produces functional beta-like cells in vitro. EMBO J. 34, 1759–1772 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Nair, G. G. et al. Recapitulating endocrine cell clustering in culture promotes maturation of human stem-cell-derived β cells. Nat. Cell Biol. 21, 263–274 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Sneddon, J. B. et al. Stem cell therapies for treating diabetes: progress and remaining challenges. Cell Stem Cell 22, 810–823 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Zhou, Q. & Melton, D. A. Pancreas regeneration. Nature 557, 351–358 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Turner, M. et al. Toward the development of a global induced pluripotent stem cell library. Cell Stem Cell 13, 382–384 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Morizane, A. et al. MHC matching improves engraftment of iPSC-derived neurons in non-human primates. Nat. Commun. 8, 385 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Wei, Z. et al. Vitamin D switches BAF complexes to protect β cells. Nat. Commun. 173, 1135–1149 (2018).

    CAS 

    Google Scholar
     

  • 32.

    Yoshihara, E. et al. Disruption of TBP-2 ameliorates insulin sensitivity and secretion without affecting obesity. Nat. Commun. 1, 127 (2010).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Buenrostro, J. D., Wu, B., Chang, H. Y. & Greenleaf, W. J. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 109, 21.29.1–21.29.9 (2015).


    Google Scholar
     

  • 34.

    Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS 

    Google Scholar
     

  • 36.

    Trapnell, C. et al. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat. Biotechnol. 31, 46–53 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Roberts, A., Pimentel, H., Trapnell, C. & Pachter, L. Identification of novel transcripts in annotated genomes using RNA-seq. Bioinformatics 27, 2325–2329 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    van Dijk, D. et al. Recovering gene interactions from single-cell data using data diffusion. Cell 174, 716–729 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Huang da. W. et al. Extracting biological meaning from large gene lists with DAVID. Curr. Protoc. Bioinformatics Ch. 13, https://doi.org/10.1002/0471250953.bi1311s27 (2009).

  • 42.

    Walter, W., Sánchez-Cabo, F. & Ricote, M. GOplot: an R package for visually combining expression data with functional analysis. Bioinformatics 31, 2912–2914 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *